Search

Negative feedback control of neuronal activity by microglia - Nature.com

seliranga.blogspot.com
  • 1.

    Werneburg, S., Feinberg, P. A., Johnson, K. M. & Schafer, D. P. A microglia-cytokine axis to modulate synaptic connectivity and function. Curr. Opin. Neurobiol. 47, 138–145 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. & Du, J. L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Eyo, U. B. et al. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J. Neurosci. 34, 10528–10540 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Akiyoshi, R. et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro 5, ENEURO.0088-18.2018 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Kato, G. et al. Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. eNeuro 3, ENEURO.0004-16.2016 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Peng, J. et al. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol. Brain 12, 71 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 9.

    Bernier, L. P. et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep. 27, 2895–2908.e4 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Madry, C. et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97, 299–312.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Elmore, M. R. P. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Bozzi, Y. & Borrelli, E. The role of dopamine signaling in epileptogenesis. Front. Cell. Neurosci. 7, 157 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Chitu, V., Gokhan, Ş., Nandi, S., Mehler, M. F. & Stanley, E. R. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39, 378–393 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Kana, V. et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J. Exp. Med. 216, 2265–2281 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol. 10, 2199 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Wenzel, M., Hamm, J. P., Peterka, D. S. & Yuste, R. Acute focal seizures start as local synchronizations of neuronal ensembles. J. Neurosci. 39, 8562–8575 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R. A. Vesicular release of ATP at central synapses. Pflugers Arch. 452, 589–597 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Pascual, O. et al. Neurobiology: astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Corkrum, M. et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 105, 1036–1047.e5 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Beamer, E., Conte, G. & Engel, T. ATP release during seizures—a critical evaluation of the evidence. Brain Res. Bull. 151, 65–73 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Madry, C. et al. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl Acad. Sci. USA 115, E1608–E1617 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Dissing-Olesen, L. et al. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Robson, S. C., Sévigny, J. & Zimmermann, H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2, 409–430 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Lanser, A. J. et al. Disruption of the ATP/adenosine balance in CD39−/− mice is associated with handling-induced seizures. Immunology 152, 589–601 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Dunwiddie, T. V. & Masino, S. A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Zimmermann, H., Zebisch, M. & Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8, 437–502 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Flagmeyer, I., Haas, H. L. & Stevens, D. R. Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro. Brain Res. 778, 178–185 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Yabuuchi, K. et al. Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2A receptor signaling in the neostriatum. Neuroscience 141, 19–25 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Trusel, M. et al. Coordinated regulation of synaptic plasticity at striatopallidal and striatonigral neurons orchestrates motor control. Cell Rep. 13, 1353–1365 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Zhou, S. et al. Pro-inflammatory effect of downregulated CD73 expression in EAE astrocytes. Front. Cell. Neurosci. 13, 233 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Bateup, H. S. et al. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11, 932–939 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Süß, P. et al. Chronic peripheral inflammation causes a region-specific myeloid response in the central nervous system. Cell Rep. 30, 4082–4095.e6 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 39.

    Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Mildner, A., Huang, H., Radke, J., Stenzel, W. & Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Wohleb, E. S., Franklin, T., Iwata, M. & Duman, R. S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 17, 497–511 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139, 1265–1281 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Bejar, R., Yasuda, R., Krugers, H., Hood, K. & Mayford, M. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J. Neurosci. 22, 5719–5726 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Stanley, S. et al. Profiling of glucose-sensing neurons reveals that ghrh neurons are activated by hypoglycemia. Cell Metab. 18, 596–607 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Harris, S. E. et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 50, 42–53 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Rothweiler, S. et al. Selective deletion of ENTPD1/CD39 in macrophages exacerbates biliary fibrosis in a mouse model of sclerosing cholangitis. Purinergic Signal. 15, 375–385 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Scammell, T. E. et al. Focal deletion of the adenosine A1 receptor in adult mice using an adeno-associated viral vector. J. Neurosci. 23, 5762–5770 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    André, P. et al. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest. 112, 398–406 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Casanova, E. et al. A CamKIIα iCre BAC allows brain-specific gene inactivation. Genesis 31, 37–42 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    von Schimmelmann, M. et al. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat. Neurosci. 19, 1321–1330 (2016).

    Article  CAS  Google Scholar 

  • 62.

    Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Purushothaman, I. & Shen, L. SPEctRA: a scalable pipeline for RNA -seq ana lysis. https://zenodo.org/record/60547#.X1khQDNKjIU (2016).

  • 65.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Howe, E. A., Sinha, R., Schlauch, D. & Quackenbush, J. RNA-seq analysis in MeV. Bioinformatics 27, 3209–3210 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (W1), W90−W97 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16, 1126–1137 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Bohlen, C. J., Bennett, F. C. & Bennett, M. L. Isolation and culture of microglia. Curr. Protoc. Immunol. 125, e70 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 73.

    Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Gabriel, L. R., Wu, S. & Melikian, H. E. Brain slice biotinylation: an ex vivo approach to measure region-specific plasma membrane protein trafficking in adult neurons. J. Vis. Exp. 86, e51240 (2014).

    Google Scholar 

  • 75.

    Crupi, M. J. F., Richardson, D. S. & Mulligan, L. M. Cell surface biotinylation of receptor tyrosine kinases to investigate intracellular trafficking. Methods Mol. Biol. 1233, 91–102 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Sullivan, J. M. et al. Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice. J. Exp. Med. 212, 1771–1781 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://www.biorxiv.org/content/10.1101/061507v2 (2016).

  • 79.

    Yoder, N. C. peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate). https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate (Matlab Central File Exchange, 2016).

  • 80.

    Klaus, A. et al. The spatiotemporal organization of the striatum encodes action space. Neuron 95, 1171–1180.e7 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Barbera, G. et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92, 202–213 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Kato, D. et al. in Microglia. Methods in Molecular Biology (eds. Garaschuk, O. & Verkhratsky A.) (Humana, 2019).

  • 83.

    Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Ting, J. T. et al. Preparation of acute brain slices using an optimized N-methyl-d-glucamine protective recovery method. J. Vis. Exp. 132, e53825 (2018).

    Google Scholar 

  • 85.

    Fieblinger, T. et al. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat. Commun. 5, 5316 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Graves, S. M. & Surmeier, D. J. Delayed spine pruning of direct pathway spiny projection neurons in a mouse model of parkinson’s disease. Front. Cell. Neurosci. 13, 32 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Wong, J. M. T. et al. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A 1446, 78–90 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Gangarossa, G. et al. Convulsant doses of a dopamine D1 receptor agonist result in Erk-dependent increases in Zif268 and Arc/Arg3.1 expression in mouse dentate gyrus. PLoS One 6, e19415 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Bunch, L. & Krogsgaard-Larsen, P. Subtype selective kainic acid receptor agonists: discovery and approaches to rational design. Med. Res. Rev. 29, 3–28 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Willoughby, J. O., Mackenzie, L., Medvedev, A. & Hiscock, J. J. Distribution of Fos-positive neurons in cortical and subcortical structures after picrotoxin-induced convulsions varies with seizure type. Brain Res. 683, 73–87 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Racine, R. J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat. Neurosci. 19, 623–633 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 95.

    Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Sousa, C. et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 19, e46171 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Let's block ads! (Why?)



    "control" - Google News
    September 30, 2020 at 10:16PM
    https://ift.tt/3ncSK3R

    Negative feedback control of neuronal activity by microglia - Nature.com
    "control" - Google News
    https://ift.tt/3bY2j0m
    https://ift.tt/2KQD83I

    Bagikan Berita Ini

    0 Response to "Negative feedback control of neuronal activity by microglia - Nature.com"

    Post a Comment

    Powered by Blogger.